IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Poincare maps of Duffing-type oscillators and their reduction to circle maps. I. Analytic results

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 6335
(http://iopscience.iop.org/0305-4470/25/23/028)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:41

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A* Math, Gen. 25 (1992) 6335-6356. Printed in the UK

Poincaré maps of Duffing-type oscillators and their reduction
to circle maps: 1. Analytic results

G Eilenbergert and K Schmidt}

t Institut fiir Festkorperforschung, Forschungszentrum Jiilich, Postfach 1913, W-5170
Jllich, Federal Republic of Germany
} EDS Deutschland, Eisenstrasse 56, W-6090 Riisselsheim, Federal Republic of Germany

Received 6 April 1992

Abstract. Bifurcation diagrams and plots of Lyapunov exponents in the r-Q2-plane for
Duffing-type oscillators

E42re+ Ve, Q) =0

exhibit a regular pattern of repeating selfsimilar ‘tongues' with complex internal
structure. We demonstrate here that this behaviour is easily understood qualitatively
and quantitatively from the Poincaré map of the system in action-angle variables. This
map approaches the one-dimensional form

¥rt41= A+ Ce™"T cos pn T=mn/Q

provided e~"T (but not necessarily Ce=7T), r and € are small. We derive asymptotic
(for small r, Q) formulac for A and C for a special class of potentials V. We argue
that these special cases contain all the information needed to treat the general case
of potentials which ocbey V" > 0 at all times. The essential tools of the derivation
are the use of action-angle variables, the adiabatic approximation and the introduction
of a non-oscillating reference solution of Duffing's equation, with respect to which the
action-angle variables have to be determined. These allow the explicit construction of the
Poincaré map in powers of e="7. T first order, we obtain the -map, which survives
asymptotically. T second order we obtain the two-dimensional I'<p-map. In I direction
it contracts by a factor e~*T upon each iteration.

1. Introduction

Nonlinear oscillators and their bifurcation diagrams have been widely considered
for decades, beginning with Duffing [1]. The bifurcation diagrams have a rather
regular structure asymptotically, that is, for driving periods 7" much larger than the
oscillators own characteristic time and for friction coefficients » small enough such
that exp(—r7') remains distinguishable from zero, This regularity has aroused quite
some interest (see, for instance, Parlitz and Lauterborn [2] and the literature cited
there), but a global understanding of its mechanism has not so far been achieved.

We shall demonstrate here that this mechanism can be rather easily understood
and used. It applies in principle to all equations of the type

&+ 2ri 4+ V(z,Qt) =0 (1.1)
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6336 G Eilenberger and K Schmidt
where
Viz,r)=V(z, 7+ 2x) {1.2)

and the following additional properties are assumed: V has only one extremum z,(7)
at all times, which corresponds to a stable equilibrium of the system

Vi(zy(7), 7} =0 and V' (zy(7), T} 2 0. (1.3)

In general, V/{zy(7),7) > 0 but at discrete points in time, say r = 7, including all
periodic repetitions, we assume V"(z,(7,),7,) = 0; ie. the momentary harmonic
frequency about the equilibrium vanishes at the times =,.

Now, for small » and 2, we can apply the adiabatic theorem. In the variable
z = ¢"x, the system is Hamiltonian with a slow time dependence and thus its action
I stays constant most of the time. In the z-variable’s phase space, I(t¢) decays like
¢~2"*, which is just the phase space contraction to be expected. Around the times
Qit, = 7,, however, the adiabatic theorem fails because the momentary harmonic
frequency becomes smaller than . At that point, the action, which had almost
decayed to zero, gets kicked up to a new starting value I(0) which depends on the
angle variable @, = (t_) via "7 cos,. At the same time, ¢ is set essentially
to zero. The increment of ¢ through the next adiabatic period T is obtained by
integration of w( (), 7), which gives a leading term A,7 and a term ~ e~ "7 cos ¢,
from its J-dependence. Thus, an angular Poincaré map

Gog1 = Ag+ AT+ A(r, Q) + C(r, e cos o, (14)

is obtained where the functions A and C are finite series of positive powers of
{(Q"/r), n < 1. Constant factors in A and C have to be determined numerically
from the parameters of V. The map (1.4) has a non-trivial behaviour only in the
range of parameters where Ce™"7 > 1, and there it fully explains the bifurcation
diagram of the system (1.1) in the r—2 plane. There have been previous attempts
(Sato et al [3]) to reduce Duffing type equations to circle maps. These authors,
however, did not deduce our map (1.4).

In section 2, we shall discuss the action-angle transformation for the system (1.1).
Our aim is to derive the circle map and determine A and C for model systems of
the type

&+ 2r + sign(z)|z|¥ = |z|! P(Qt) (1.5)

with (essentially) arbitrary positive exponents g and €. In section 3, we consider the
case £ =0 and

P(Qt) = 20(sin Q1) ~ 1 (16)

ie. a driving force which switches from +1 to —1 and back at intervals T = Q-1
Although this case in itself does not belong to the class described above, it models
and correctly explains the ‘kick’ mechanism.

In section 4 we treat the cases

P(7) = sgn(sin 7)|sin7|? 1.7
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and
P(r)=|{sinT|?, (1.8)

We introduce a slowly varying reference solution of equation (1.5), which has an
analytically accessible long time behaviour. The general solution of equation (1.5)
oscillates around this reference solution; the oscillations can be treated explicitly by
use of the adiabatic approximation.

Section 5 contains most of the technical details of the paper. Here the Poincaré
map is derived to second order in e~"7, and it is shown how the r—Q-dependence of
its parameters can be determined analytically. Restriction to first order in e~"7 then
yields the map (1.4).

In section 6, we shall argue that the cases treated in sections 4 and S cover the
gencral case, which can, if necessary, be put together from different successive maps
of the type described in section 5.

2. Adiabatic approximation
We derive here the application of the adiabatic theorem to systems with friction and

discuss those aspects of it which are needed in the following sections.
Consider the equation of motion

F42ri 4+ Vi(z,t) =0 21
Vie,t} =Y %av(t)a:”. (2.2)
r=1

To apply the transformation
z=etz 2.3)

means that we look at the n
means that we 00K at the¢ phasg space 1] e

spiral inwards, through a magnifying glass with ever increasing strength, such that we
observe the Hamiltonian motion

traiectories derived from {2 1), which alwave

W LAEIR (& FRALIVL Qv Ay

P4+ Wi(zt)=0 2.4)
Wi(z,t)=eV(ez,t) - %rzzz

= a)(t)e™ 2 + §(ay(t) — r¥)2t + Jay(t)e™ "+ ... (2.5)

We note that any finrear term in V leads to an exponentially increasing term in W,
This will invalidate the adiabatic approximation for large ¢, which points to the
(intuitively obvious) fact that one has to increase the distance from the minimum of
V by e¢™ 10 obtain a usefu! Hamiltonian description.

We shall therefore assume a; = 0 and have to take care in the following that this
condition is met. This is at the heart of our derivations.

The harmonic term from (2.1) remains without an exponential factor in (2.5) but
is supplemented by —1r?2%. For the intended limit » — 0, this addition i irrelevant,
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but for computational applications with necessarily finite r it increases the accuracy
if one keeps it.

The higher ‘nonlinear’ terms in the equation of motion (2.4) are eliminated
exponentially in time, which reflects the fact that the original trajectory spirals into
the harmonic region.

We now consider energies and actions with respect to z- and r-variables with
considered to be a fixed parameter

F=124W(z,1) (2.6)
E=3i4+rze+ V(z,r)=€e " F 2.7
.nﬂﬂ=§%f¢mF—W@Jnx 28
HEJ):%ifJaEt;E;;hf=€hnﬂﬂr) @.9)
Viz,7)=V(e,7) - iric?. (2.10)

Again the r-dependent terms in £ and V vanish for r — O but ought to be kept in
numerical computations. The generating function for the canonical transformation to
action-angle variables (AAVs) is well known

Sy(x,J,7) = j VAFT T “WE, Tl d¢. @11)

Here F(J,r) is the inverse of J(F,r) from (2.8); it is unique by our convexity
assumption for V., We obtain

w(z,‘]’r)zw-/z\/;cn?=w/z dEEv (212)
where
= OFULn) _ BE(LT) _ ip gy, (2.13)

aJ - al

The adiabatic theorem guarantees that asymptotically, for » and 2 small, the motion
of the system satisfies

I(t) = I(0) e~ ie. J(t) = constant (2.14)

and
w(t)=@(0)+/; w(I(r), 7)dr. 2.15)

To carry out the canonical transformation induced by (2.11) it is convenient to
define parameters w, and a, through the notation

W(z,7) = wﬁ(r) %zz + %0.3(1')23 + %114(':').24 +...). (2.15)
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We obtain the formulae

2(¢) = ~Roos ¢ + %Rz(cosmp ~3)

_1.3f(a} a, 11a] 3a, "
SR[(6+4 Oos3<p+( 5o~ Josel +O(RY)  (217)

and (for the momentum () = p())

1 - . 03 2 .
w—up(p) = Rsingp - —i-R sin 2¢

SRER

2
5 —41) sin 3¢ — (33'1 - 3“4) sin cp] + O(RY) (218)

9 2

Here, we have taken R = /2J/w, and defined » = 0 by using for the lower
integration limit z;, in (2.11) the lefi turning point for each trajectory. In conjunction
with these formulae for z and p we have

F(J,7) = wyJ + ( Sa3 , 3““>JZ+.... 2.19)

The Hamiltonian in action-angle variables—which yields the corrections to the
adiabatic approximation—reads

H(J, @, )= F(J, ‘r)+ o Sl(z J,7)
= F(J,7)— —-ﬂJsin2(,o
2wy
1 4wy . 4w AN
+ EJRI:(aw—G.j'F 03) Sln3<p— (g—ias“ﬂ-s) Slnﬁp} +9(R4).

(2.20)

Since the angular average of H — F vanishes, the true action-angle variables deviate

from their adiabatic approximations (2.14) and (2.15) on the average only to second

order in the derivatives wy, d,,. Therefore, the correction to first order in w, ¢, for

all quantities z,p, J, ¢ can be expressed through the adiabatic variables alone. This

well known fact enhances the range of validity of our asymptotic expansion in r and

2 considerably.
We obtain for the corrected quantities ¢ and J_

_ 1wy 2wy 1, ( Wy 3.
v =¥t Zw—gcos?.cp— zqu[( ‘-‘-’ua3+ Tga3) 008 32 2wua3 743 | 08 0
(2.21)

1u 4w ) 4w . .
chj{(l Egg)snn2<p+ R[( L‘Jzab3+ as)sm3(p—(—jw—za3—a3)smap]}

222)
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with relative errors in second order of time derivatives and R? times first order of
time derivatives. Here, the quantities J, on the RHS are the adiabatic ones from
(2.14), (2.15). The quantities z and p are then obtained by inserting J, and ¢, for
J and ¢ in (2.17) and (2.18). We shall refer to these formulae in section 5.

The Hamiltonian (2.20) can be processed further. This is particularly useful if
one intends to construct numerically Poincaré maps in AAvs for given fixed values
of » and {} instead of using the asymptotic formulae of section 5 which contain the
parameter dependence in explicit analytic form.,

The transformation

J =
1/;-oos<p=g\/jcos¢» (2.23)
0
po—— 1 = .. B -
Vdwgsing = EVJ(smqp—ggcosw) (2.24)
where g(r) obeys the differential equation

1
g+ wi(r)g - 7 =0 (2.25)

eliminates the term linear in J from equations (2.20)—(2.22). It is generated by the
function

S,(@,J, 1) = Jarctan(wyg® tan @ + gg) (2.26)

and yields the new Hamiltonian
J

g3 (1)
From this, the ¢-dependence can be eliminated entirely through an ansatz for a
third generating function S; in powers of J/2. Its coefficients are to be determined
recursively from explicitly solvable linear first order differential equations in =. The
total effect of S,, S, and S, could be more conveniently accomplished in one step,
however, by starting directly with an ansatz for z and p of the type of equations
(2.17),(2.18), where w, is replaced by g~* throughout.

We shall later apply the formalism to potentials V(y,t) which are homogeneous
functions of degree ¢+ 1 in y and some z(t); more specifically

Hy(J,¢,7) = == + O(J¥2). 227)

1 z PR
Viy.zy) = a“_';_—i'[(y + zy)?! ~ (g + Dyzl — 277]

{g9~-0)

x (£+1)
— 2Tyt e)™ = (4 Dyaf-ay™]

—€ (g E=1D(g=0) (4-
qz e 2y (et E=1ia )mgq Dysy (2.28)

Using this homogeneity, we obtain the scaling relation (dropping the %rz term from

(210)) _
LY E(I,z,) = E(LY2] Lay). (2.29)
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This yields expansions

E(I,z)) =Y e, otV He+9) (2.30)
n=1
and
w(l,zg) = ez ™V 4 2¢,0520 4 ... (2.31)

The parameters in (2.16) are then given by

wi = (g~ 0)z§! (232)

a3 = Hag+ £- Dy’ (2.33)

a0y = }@*+ gt + € - 3(q + £) 4 2]z, 2.34)
generally we have a, ~ 227"

Finally

c, =(g— &) ey = —g2t +7qe + 22 —qg-£~1. (235)

3. Step function driving as kick mechanism

In this section we shall demonstrate, with the technically simplest model, the
mechanism which leads to the map. This model turns out to correctly describe
the kick mechanism encountered in section 4. We consider

&+ 2rd + 2% = 1 = 20(sin Q1) — 1 (3.1)

i.e. the sign of the driving force switches at times n7. (Note that we use for
convenience of notation the symbol T for the half period «/.) We assume ¢
to be an odd integer, to avoid the notational complication sgn(z)|z(¢. In the final
formulae, however, any ¢ > 1 may be inserted. The equation of motion (3.1) is
derived from a potential

1 1
- g+l _——
Vily) = q+1(y:t1) FU- (3.2)

ie. = = ry+ y with zy = £1 in (228). The region in parameter space to be
considered is given by

r<l1«T. (3.3)
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Voly)

Uy+bly) & 727

I= 10 e” Irt

- x

¥4

N=-V2li/uy cosy,

Figure 1. Step function driving as kick mechanism.

Crucial for our derivation is the further assumption e~"T <1 as we shall systematically
neglect higher powers of this factor. This will be justified later.

The mechanism which leads to the map is then casily understood with the help
of figure 1. Suppose, we start a motion at ¢ = 0 on the right potential curve V. (y)
exactly at the point P, with E, = 2, I, = I{ E;) and (0) = 0. This defines E,, I,
and our convention for ¢ = 0. [, and w, are functions of g; however, for simplicity
of notation, we shall not make this explicit in our formulae.

The trajectory spirals down into the harmonic region, where it reaches some point
Q at time T with [, = [;e~2"7, and some , to which belong the quantities

[21 , .
Y= - w_l oS 2, 1 = /21w, sin ¢, 3.4)
1

proportional to e~"7. The harmonic frequency here is w, = ¢'/2. At that moment,
the potential switches to V_(y) and the energy is instantancously raised to point
R—this is the ‘kick’. The height of R above the point R on the potential curve
V_(y) is the kinetic energy (the same as the height of the point @ above the curve
V,(y)). It is proportional to y* ~ e~*"T and is thus negligible to lowest order in
e~"T. Essential for the kick is the first order term §E, = 4, V! (2) ~e~"T.

The next cycle of length T begins with 1(0) = I, + 61, and some (0) = &y
For this cycle, we use the notation implied by symmetry, i.e. ¢ = 0 at the point R.

We have (counting the angle clockwise from the point R)

6{,00 = —WUT/?_(Iz_)- = —%E(ZIuwl)llze_rT Sin (pl (3.5)
and

oI ) 2 [2I\'* _,
5fu='5§(Eu)y1V—(2)=——(—u) e ™7 cos ;. (3.6)

Wy \ W
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T lowest order in e~"7 the 6, term can be neglected compared to the angle
increment Ay of (3.11); ie. the reinjection occurs with = 0. (di, does play
a role in the general case treated in section 5). This cycle ends at point S with
I+ &1, = e T (I + &1,), where 61, is smaller than I, by a factor e=*7 and thus
again negligible. This is the crucial step which climinates one phase space dimension
and leads to a map in  alone.

It means that in the full Poincaré map in I~ coordinates the contraction towards
to line I = I, is so strong that this variable may be neglected altogether. The ‘kick’-
mechanism is thus based on a discontinuous change of the variable y which measures
the position of the oscillator with respect to the minimum of the potential; the velocity
y at that moment is here irrelevant, as it only leads to contributions of higher order in
¢~"". This mechanism is our ‘model A. This alternation between kicks and adiabatic
motion (which, as we shall see in section 4, also describes the general case) seems to
lie at the base of the ‘flip and twist map’ described by Brown and Chua [4].

A different kick mechanism, ‘model B, will also be encountered in section 4. In
that model, the roles of y and y are interchanged; ¢ is suddenly increased to ¥+ 2pg
while y remains unchanged. We obtain expressions analogous to those of model A.

Returning to model A, we shall show below that the increment in ¢ during one
cycle is of the form

wy 1

_ 1 Wy —
A(p = w,T+ ',FAZ - —21.—0—-;6[“ (37)

to linear order in 61 This, together with (3.6), yields the map
1 -
Pnp1 = wi T+ ~(A; + Be ™ cos ,) (3.8)
where the constants A, and B have to be determined numerically. They contain all
the relevant information on the nonlinearity of the system.

The map (3.8) can be written

A,
Ay

3w

a~™T 2y
L . \J.J}

S| -

oL Aonea o
o+ O o

e 4
S Pn -

=w1

Pyl = ﬂ =

It obviously yields 27 periodicity of the bifurcation diagram in the o-3 parameter
plane. In the r—Q-plane, the loci of equal features (constant 8 = Be~¥) lie on the
curves

Q=ar(K —logr)~L (3.10)

Q decreases faster than =, albeit only logarithmically. Put differently, e~"7 ~ r for
the parameter range of interest; this justifies the neglect of higher orders of e="7,
We shall now complete the derivation of the relation (3.7). In

e
(="
~

—
tad

i
[,
e

Ap = o(T) - () = w

we use from the expansion (2.31)

Q(1)=ﬂ%1”l=zcz+3c31+... (3.12)
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and dt = —(1/2+)(dI /T) to obtain

I(0)
W(T) -~ (0} =T + El; . Q(IdI. (3.13)

For this integration, we replace the lower bound by 0 since @ behaves regularly at 0
and I(T) is negligible. We expand the upper bound to first order in 61; to obtain
(3.8)

1 Io wl - LIJ“ 1
Ap=wT+ 7 Jy Q(I)dI - 0, r &1, (3.14)
4. The models P(+) = sin?r
We consider the system
&+ 2re + 2? = zt(sinQt)?. (4.1)

As we shall argue in section 6, this contains all the information required to understand
the general case mentioned in section 1. We take ¢ an odd, £ an even, and p an
arbitrary positive integer only to avoid notational complications, our results being
valid for all real values

g>1 E=0,1o0r 22 (¢g=£€)>2p>0. 4.2)

The necessity of the third inequality will become clear below (5.20). Arbitrary
exponents are meant to imply for the driving force

model A sgn(sin Q¢)|sin Q¢|? |z 4.3)
or
model B |sin§2¢[?|=| (4.4)

and, as already mentioned, sgn{x)|z|? for the anharmonic force.
For convenience, we introduce the exponent

P
(g— 9

As mentioned in section 2, the adiabatic approximation requires the introduction of
a new variable y(t) via

o(t) = xy(t) + y(2) (4.6)

such that the total potential V for the y-motion has its minimum at y = 0 for all
times. The ‘naive’ choice for z;(¢), we call it z,(¢) (as it is a very good approximation
for most of the time), would be

1
<3 4.5)

z,(t) = (sin Q1)°. @.7)
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However, its insertion into (4.1) via (4.6) yields, of course, additional terms from the
derivatives of =, which, though of higher order in 2, diverge for ¢ — 0 and thus spoil
the desired property of V.

The equation of motion in y(¢) reads

g+ 2ry + (v + 29)? - f - [(y + zp)* — ] sin” Ot
— [#y + 2réy + =] — zfsin® Q). . 4.8)

We require the RHS to vanish, thus z, itself must be a solution of (4.1), the ‘reference
solution’. For the application of the adiabatic approximation to the motion described
by the LHS of (4.8}, z,(f) must be a special solution, namely a creeping solution which
only varies on some time scale 2=7 > 1, and not on time scale 1, as the general
solution does, i.e. i must not oscillate.

Y ey
Py =

Figure 2. Reference solution with jumps.

Such a solution indeed exists during one half period 7. It can be defined through

an asymptotic expansion in r and 2. It will be close to x, except near ¢ = 0 and
t = 7. Its qualitative phase portrait (and the symmetric one for the next half pericd

SwSeLGLIYS plinsy pas S OFLLLLILL I LW AUE WiV LA dldil Pl

of model A) is shown in figure 2. These reference solutions do not join together at
t = T, as they do in the harmonic case. Instead, for model A, it jumps from « to
—xy, with fixed #;, whereas for model B, z, remains unaltered and #; jumps from
~pw 10 +py. This provides exactly the two kick mechanisms discussed in the previous
section!

During each half period T, the potential V(y,z,(
thus allows for the adiabatic approximation. At¢ = nT the action [ is always kicked
up again.

The determination of the kick parameters requires further investigation on x;(¢).
This we shall consider next.

To investigate x,(t) in the vicinity of ¢ = 0, it suffices to consider the equation
of motion

i+ 2ré 4+ 27 = £4(Q1)P. (4.9)
We rescale the variables as

x(t) = R7¢(T) t=07"r (4.10)
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with the exponents

26 P (¢g—1)8
e § = —— - s
1T 25 (-6 g-¢ 7= T4 (-6 (11
to obtain
E+20f + &9 =¢0? (4.12)
p=r27". (4.13)

The smooth solution £,( ) of (4.12), which then corresponds to the desired function
xy(t) near ¢ = 0, can be approximated by an asymptotic series, which is obtained by
iteration of

Earr(7) = [77 = &74(€, +20€,)V070 (4.14)

starting with an initial function &,(7) = °. The series has the form

£y =751+ > Po(pr)r™™) A=2+4(g-1)é (4.15)

n=l1

where the P, are certain polynomials of order n. It definitely diverges as P,{0)
grows roughly like (n!)2. Nevertheless, it is an asymptotic approximation valid for
large = and serves several important purposes:

(a) it yields reliable initial conditions at large r for the determination of £,(7) by
numerical integration of the equation of motion (4.12).

(b) it shows that asymptotically, for small p, the p-dependence of the required solution
is negligible. From (4.13) and (3.10), we have p m= Q"7 & 1. The reference
solution x,(t) can thus be determined with r = 0! This can be made intuitive in
the following manner (figure 3).

The minimum of the total potential in (4.1) decelerates during the first quarter
period. In order for z(t) to follow this deceleration without oscillations, the
motion must start with a very particular initial velocity towards the right and a
very particular position on the RHS of the minimum (see figure 3). During some
initial time interval of order Q-7 the required relative deceleration &/ is much
larger than the friction coefficient ». On the other hand, at the time 7 =~ 1/r,
when the friction effect is being felt, z,(¢) has already approached z,(t) very
closely and the velocity is small.

The same consideration also demonstrates that the trajectories x,(t) of figure 2
remain in their respective half planes, ie. they do not cross the z-axis.

(c) The solution (4.15) shows that &,(+) approaches ¢ algebraically. Described in
the original variables, this happens on a time scale 2~7. Thus, we have fully
separated time scales asymptotically for @ — 0: z,(t) approaches (Q¢)° on the
scale £2~7 whereas the difference between Q¢ and sin Q¢ is only being felt on the
scale Q"' »> Q77 » 1.
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A

Vix, +}

\

x

Figare 3. Motion of the potential and of the reference solution.

We arrived at the following description for z,(t) in the upper right quarter of
the phase plane of figure 2 (the other quarters are obtained by symmetry)

zo(1) = (sin Q1) + Azy(1) (4.16)
where
Ary(t) = QV(&(T) - %) T =0" (4.17)
and £,(7) is the unique slowly varying solution of
o+ &) = &frr. _ (4.18)

This reference solution is similar to and is related to asymptotic solutions of Duffing’s
equations considered by Byatt-Smith [1].
In particular, we define

&1 = £y(0) & = £,(0). 4.19)

& and &, like I; and w, from section 3, belong to a set of about a dozen ‘universal’
numbers, that have to be determined numerically to obtain all the prefactors of the
map. By ‘universal’ we mean independent of » and §2. They do depend on the
exponents €, p and ¢ and on whether one considers model A or B.

To numerically calculate creeping solutions for finite values of Q0 and + one
generates initial conditions for the differential equation at ¢ = T/2 by substituting
the series

zy(t) =sin® Qe(14 3 R, Q7% sin""* Q1) (4.20)

n=1

into the equation (4.1). The coefficients R, depend on cos ¢, sin ¢ and r/§. The
serics is asymptotic for  — 0 and yields useful initial conditions at ¢ = T/2 for
creeping solutions if 22 <1071,
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5. Determination of the map parameters
In this section we shall derive the angular Poincaré map
@np1 = o+ Bo0s o, (5.1)

for systems of type (4.1) and give expressions for its parameters « and 3 in terms of
r and Q, valid asymptotically for small r and Q2. We shall obtain representations

N

a=Ay+ AT+ AF,(r,Q) (5.2)
r=2
- r N )
lc+ B, L(v— 1A, F (r,Q)J. (5.3)

Here, the constants A,, B, and C will be expressed in terms of the basic set of
numbers mentioned earlier. The functions F, are proportional to positive powers of
Q7 /r when Q < r, but we need not make this additional assumption. The formulae
{(5.2), (5.3) are asymptotic in the sense that all terms which are smaller by factors

e~ or (Q7/r)"°, compared to those kept, are systematically neglected. In the
following we shall derive our results by first crudely tracing the generation of the map
and then filling in details later.

Suppose, for the moment, that the adiabatic approximation for the motion with
respect to the reference solutions were rigorously valid at all times. At the end of
the (n ~ 1)th cycle the system coordinates are close to the endpoint of the reference
solution, denoted by 2T on the LHS of figure 2.

The nth cycle from ¢ = 0 to ¢ = T then starts with initial AAvs, which are
conveniently written as

I,(0) = Q¥+ (L +61)=Q*[ (1+e"Ti,) (5.4)
#a(0) =, + 6,. (5.5)

Here, we have denoted by I, and ¢, those values which are obtained if we start
exactly at the endpoint 2T of the LHS reference solution in figure 2. The scaling factor
27+ transforms I into the £,r scale of (4.10) such that I, becomes asymptotically
independent of Q. Continuing to ¢t = T', I, and ¢, evolve into

n = In(T) = e-er In(o) ‘pn = ‘Pn(T) (56)

where the ,, are derived below. Near T the motion is close to harmonic as in the
model of section 3; its coordinates and velocities are then given by linear combinations
of the quantities

uy=e"T(14e T, )/ 2evn and uy = u} G.7
with factors (1, /2w,)"/? and scaling powers of €, the latter depending on whether

one uses the x,t¢ or the £, r scaling. Performing a specular reflection in the =z, %
plane (considering model A), the system is again near the point 27 of figure 2. More
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specifically, it is apparent from the analogous discussion in section 3 that its deviation
from the endpoint of the reference solution is of order e~"7. The initial conditions
for the (n + 1)th cycle can now be expanded in powers of the small quantities u,,
and we can write to second order (using the usual summation convention)

—rT .
e ing1= K u, + 3 lx”‘ y Uy

b= Py, + %Pw'u,t,u.u . (5.9

Since I and ¢ are real, these coefficients are more conveniently expressed by
amplitudes and phases as

K, = K3 = } B, P, =P = 1Ce" (5.10)
Ky = K3 = {1 B,éx Py = Py = 1Cel¥ (5.11)
Kp=Ky;=1B, P, = P;=1C; real (5.12)

Also, the transformation from u, to [, iS canonical; this requires

ZIm{ K A) = % B Cysin{x; -y ) =1 {5.13)
and
Khnbh+ K \P,= P)K,+ B K,,. (5.14)

Together with I, and o, we have thus twelve numerical constants which determine
the map to second order in e~"7. We shall show below that these constants are
asymptotically independent of Q and » and thus ‘universal’; they do depend on p, ¢
and ¢, of course.

The map is thus a systematic expansion in powers of =77 and to second order
in =T we obtain for the action

ine1 =1+ 2e7Ti }Bicos(e, + x1) + €777 [Byo0s(20, + x2) + Bs]  (5.15)
and for the angle
Pat1{0) =, + e~ (14 %e—rTin)Cl cos( e, + ¥y)

+e T (Cy08(20,, + 1) + Cy). (5.16)

To complete the map, we need the evolution of ¢, ,,(0) to ,,,{7). We have

T
Pnir(T) = osa(0) + [0 wy(L 1), 1) dt. (5.17)

e {4Y 2o we all nemenviean A that
-Lu\ } s il appi UAlllIdLGu Uy
is va

valid with =z, = z,(t). We

PUPTEET R TN Al ~ N pnd T hoa Frinadine
for ¢ values ¢loseé 10 U and 1, tic lunction

i H]
x,(1) = (sin 1)°. Consequently, the expansion (2.31)

w,(I(2),1) = iucvf”'l(t)(sinﬂt)‘”" (5.18)

v=1
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where we introduce
v
5u=§[5(q+3)—(q+1)] K, =1-126,. (5-19)

We rewrite this using v = 6(1—1n)

25 1 sin 21 R 1
w, = ¢ sin" Q) + ) we, (I, + 6D (T) e~v=Drt (520)
vzl

Consider this expression in the extreme asympiotic limit 1 > r » Q where we may
linearize sin§2¢ in the region where ¢~?"* is non-negligible. The vth term in the sum
(5.20) contributes a term to the angle increment f w, di proportional to

© T(x,) (Q7\"*
— Ky 28, o—Hv—Drr — v
Fy asymptotic = Q" /U T e ™ dr = _——(V “1)% (""‘“21_) . (5.21)

We are interested only in terms with positive «,; any term with negative «, yielded an
asymptotically vanishing contribution from the upper integration limit and diverged
at 7 = 0. Consequently, we sum the terms in (5.18) only up to k., = NN, such that
Ky >0, Ky <0 (We do not consider the rather special case that some «y = 0).

The condition 6§ < 1 of (4.4) guarantees N > 2, otherwise no I-dependence
would survive in (5.20) and thus G-values of interest could not be realized with
r<l, Q<«1ande T « 1 simultaneously.

For finite + and § we obtain from the adiabatic approximation

T N
@nr1{T) — ©,11(0) =] wydt = AT+ Y we (I + 617 F,(r, Q) (5.22)
0

v=2
with
o T(3H)
A = L 2 5.23
L VAR o
and
F(r,Q) = Q=D F(‘Sm (v~ 1)%) (3.24)
where I is given by
F(b,u) = ] ¢~ 2t (sin t)~% dt
0
=2 Rem Tk 2nl(x) (5.25)

T(A—-&+ 1)1 =6—ip)

We could not find this integral in tables and arrived at equation (5.25) through
analytical continuation to § = e~i™/2 of [5]

® 1. o . T(6+ u/B)
fu e 2 (-ﬁ—smhﬁt) dt = (28) l"(fc)r,(l_é_l_”/ﬁ). (5.26)
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Collecting the terms from equations (5 5}, (8.9), (5.15), (5.16) and (5.20) we obtain
for the w-map—to second order in e~"7T

T
Cas1 = Onpa(0) + ] wy(Ly i (1), 1) dt

=, + (1+ 17774 ) Cc0s( o, + %) + €T [C, 08(2,, + ¥2) + C

+ AT+ EA,,F,(T,Q)Q+e-rTiﬂ+1)v-1 (5.27)
v=1
with
A, =vc, I} (v 22). (5.28)

Sorting the terms of ¢, ., in increasing powers of e~"7, we obtain

a1 =0+ "TO +e 770, (5.29)
where
N
Oy=w, + AT+ Y AF,(r,Q) (5.30)
=2
N
O1 =B, ) (v—1AF,(r,2)c08(, + x1) + Cy c05(, + ;) (31
v=2
and

N
0, =3 (v=1A,F,(r,Q)[B,cos(2, + x;) + By

+ §(v = 2) B 00s*(i0, + x1) + § By, 008( 0, + X1)]

+ $Cyi, cos(o, + ¥;) + Cy 0520, + ¥,) + Ci. (5.32)
These formulae contain all terms to second order in e~"T and to all non-negative
(fractional) powers of (27/r).

In the derivation of the map, equations (5.15} and (5.29)-(5.32), we used two
unrealistic simplifications:

(a) The equation of motion of the y variable from equation {4.8)
G+ 2ry+ (v + z0)? — 22 ~ [(y+ 2p) - 2f]sinf Qt =0 (5.33)

cannot be handled by the adiabatic approximation near ¢t = 0 and t = T because
there 2,/z, is nor small (see figure 2).

(b) In the same regions, (sin Q21)® does not yield a reasonable approximation to x,(t),
therefore (5.23) is not correct in this region.
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Nevertheless, the correction for both effects is completely absorbed into a proper
choice of the constants I,, ,, K and P, the map equations remain unchanged.

We shall describe here the principal idea only; technical details will be given in a
later paper.

In the vicinity of 7 = 0, we use the scaling of section 4 and solve

E+ & -¢P=0 ' (5.34)

as a good approximation for the motion within the asymptotically interesting range of
parameters r, 2. Actually, this ‘vicinity’ becomes arbitrarily large in the asymptotic
limit and we may consider initial and final times —7_ > 1 and _ » 1 large enough
that at these times the motion of £(r) — £;( ) has become harmonic and adiabatic.

For initial conditions at a large negative time r_ (observe the specular reflection—
we consider model A), we use

I 1/2 ) .
E(r ) = ~&(-T_) + (EJU(:—_)) (u,€'8%- 4 uye=ite-) (5.35)
. : [ w(r_ YN\ V2 ia _a
ér) = 6o +i L) T (e pemiaen), 536)
Here
wi(r) = (q—&)|rjla=1* (.37

and Ae_(r_) will be defined below. At large positive times r, the solution has the
form

ér) =lr) - (ots) st Ay (n) (538)
o T4
f'("'+) = éu("'+) + (2w0(7+)l+)1/2 sin(p, + Ap, (1)), (5.39)
For u; = u, = 0, we put
I, =1, and Ap, = fuq w, (I, ,r)dr (5.40)

thus defining I, and ¢,. We may now insert [, into the initial conditions (5.35) and
(5.36) and put

tr-1
I_ =1Ly and Ap_= -] w,({_,7)dr. (5.41)
0
For sufficiently small », = u3 we obtain then at 7,
T+
I, =1,+61 and Ap, =6(p+/u w,(I,,7)dr  (5.42)

with quantities 61 and &¢ which are (asymptotically in 7,) independent of =, and
which have the expansion (5.8) and (5.9) in powers of u, and u,.

This construction ensures that all effects of the transition through the non-
adiabatic and non-harmonic region near r = 0 as well as the effect of w —w, ¥ 0
in this region are fully absorbed in the well defined limiting quantities I,, ,, 61,
8 and the expansion coefficients of the latter in powers of u,. These quantities are
accessible only numerically.

This completes the derivation of the map.
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6. Summary and conclusions
We have shown, that the bifurcation behaviour of the generalized Duffing equation
&+ 2ré + z? = z'sin® Q¢ (6.1)
can be understood asymptotically from a one dimensional (angle-) Poincaré map

Ppp1 =0+ Fo0sp,. (6.2)

Two aspects of the ‘asymptotic’ limit are essentia! assumptions with physical contents;
a third one is more technical,

Firstly, we assumed the validity of the adiabatic approximation which is sufficiently
well fulfilled if r and € are of order 10! or less. Secondly, we argued that the
Poincaré map for one half cycle is essentially one dimensional and only depends on
the angle  if e="7 is small enough; r7 > 2 suffices. The obvious reason for the
latter being, that the action contracts by e=2"7 during each half cycle. Both conditions
are indispensible in obtaining the map (6.2), although we believe that qualitatively
the structures of the ‘tongues’ in the Duffing’s equations’ bifurcation diagram remain
the same even outside this asymptotic region.

Thirdly, we have derived analytic expressions for the constants « and 3 in terms of
~, {1 and numerical constants, which are summarized below. For these expressions to
be nearly correct, one needs to go further into asymptopia. The factor e~™" roughly
estimates the relative error in the F¢os ¢, term of (6.2); including a deviation from
the pure cosine behaviour as one sees in (5.31). In addition, the quantity " /r must
be rather small to justify the neglect of higher terms in the v sums.

Thus there exists a wide region in »—{2 parameter space, where a one-dimensional
w-map with first and second Fourier components is a very good approximation to
the Poincaré map for (6.1), but where analytic expressions for the coefiicients are
not easily available, Actually, for applications, this is the more interesting region.
Although following section 5 one may derive corrections to the formulae given below,
it may be more practical to simply determine a one dimensional map by numerical
integration of (6.1) for one half period T. This will be described in the forthcoming
paper. The asymptotic AAVs are best initialized and compared with map values at the
point ¢t = T'/2.

Collecting all the bits and pieces from the previous sections, we have obtained
the following asymptotic expressions for the parameters of the map (6.2)

N
a=Ag+ AT+ Y AF(r,Q) 6.3)
v=12
N
p=e[c+ B (v - DA, R (n0)] 6:4)
=2

where 4, = o, + x» By and C = C|cos(y; — x;) are related to the numerical
constants defined in section 5. We have shifted all angles by x; to obtain the pure
cosine behaviour in (6.2). The omitted term C,sin(v; — x;)sin, contributes a
change in amplitude and a phase shift which are of order (27 /r)~*2, but neglecting
this term is valid only in the extreme asymptotic limit.
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The factors are

Cy F(izl') vl
= i A, = I .
1 ﬁr\( nlzil) v ve,f, (6 5)
_ _ e 2xl(k,)
F = 2-%Qfln l)x,c mv=-1)r/0 v
v P(1-6, +iCZyr(1 - 6, — jlezlny
~ L(r) (Q”

(v —=1)" )
which contain the fourth numerical constant I, and the Taylor coefficients nc, from
(2.34).

ThE exponents were
P 1 (a-1)é
b= L _ <= =477 _
7—-¢ 5% "= Ty (a-Dé 7
6[v
5, 5[5q+3)—(q+1)] K, =1-28, (68)

and N is to be determined by ky > 0, x5, < 0.

The foregoing considerations are in principle easily extended to the general case
of a potential V' (x, 2t) as described in section 1. In the asymptotic region of small
and r, most of the time the system oscillates harmonically around the slowly moving
minimum of V, given by Equation (1.3). This motion determines the leading term of
the angle increment as AT with

EPES |
av=1 [T Ve, e ©9)

where s, = Qt, and s,,, = ¢, , are two subsequent time instants at which
V"(zy(s),s) = 0. They span a smooth ‘period” between two kicks. Everything else
happens in a narrow region around the t,, where V' may be approximated by its
lowest order terms in = and ¢ For simplicity of notation, let us take ¢, = 0 and
zy(t,) = 0. Then, V'(0,0) =0, V"(0,0) = 0, and we may write, to lowest order in
¢ and t, with proper scaling of time and length

~ ! +1 _ L1,
Vi, Q1) ~ ——lEl e_l_ISgn(f)!EI Ari? (6.10)
i.e
V'(z,Qt) ~sgn(£)|€)? — o, €47, (6.11)

One has to assume ¢ > 1 and ¢ > ¢ lest the assumptions on V" and on
x4, respectively, are violated. (The condition 2p < (q - £) is not necessarily
fulfilled. In that case, our theory is not applicable!) The sign function

= (v/I7])¥, v = 1 or 0, allows for the two models A or B respectively for
which () crosses or touches the t-axis. Except for additional numerical factors
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which enter through the foregoing scaling, we obtain the map (6.2) from (t,) to
@(t,41), where the factors now have to be determined by considering the motion
through two previous ‘periods’. Thus, if several zeros at different time instances
occur in V" during one period 27/, one had to introduce onc map with possibly
different parameters for each ¢,. The bifurcation diagram is then determined by the
finite sequence of maps which describes the alternation between adiabatic motion and
kicks which the system experiences during one full cycle. In the models of section 4,
we exploited the symmetry between both half periods to reduce all effects to one
single map (6.2).
The original Duffing equation

X +2RX + X3+ X = Asinwr 6.12)
does not obviously Delong to the class of nonlinear systems we have considered since
V' > 0 throughout in (6.12). Its bifurcation diagram is often considered [2] in the
A-w plane for fixed R and large A and has features very similar to the one without
the linear restoring force. This is explained as follows.

Let a = A3 > 0 and rescale

X ) LW R i
= — t=ar = — r= — (6.13)
a a a
to obtain
&+ 2r& + 22 + (r/R)Yx = sin Qt. (6.14)

The asymptotic behaviour in the »—Q parameter plane with R held fixed is now
described by our theory with ¢ =3, £ =0, p = 1. The term (r/R)?z is negligible if
{(rQ~7) <« R; we had neglected a similar term in section 2.

An interesting question arises how to understand bifurcation diagrams for systems,
the potentials of which do not obey all assumptions made in section 1.

One could consider systems where V' > 0 remains finite asymptotically in r and

1 [ h h e A thia
Q) for all times ¢. Qur adiabatic approx.mauﬂn scheme breaks down in this case

as it yields I(¢) ~ e~?"*[(0) forever. It is conceivable that such systems have no
bifurcations at all in the asymptotic limit. Otherwise, one expects that /2 < 1 is
the parameter regime of interest. One could imagine, then, that some correction to
the adiabatic approximation leads to an equation for slow motion of I, which might

yield a map upon completion of a cycle.
Another m«uhlhm for V is that V' = Q does occur, but that YV has a mnlnnlp

well structure, at Ieast during some time intervals (for instance, the penodlcally
driven Josephson junction, a system of great interest). In that case, the adiabatic
approximation applies during most of the time, but switching between different wells
will yield a wealth of new phenomena, which are not likely to be amenable to the
simple type of analysis we have used here.
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