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AbstracL Bifurcation diagrams and plats of Lyapunw exponents in the r-0-plane for 
Duffing-type w i l la ton  

f + 2r2 + V ' ( z ,  nt )  = 0 

ahibit a regular pattern of repeating self-similar 'tongues' with mmplex internal 
stmcture. We demonstrate here that this behaviour b easily understood qualitatively 
and quantitatively h m  the Paincad map of the system in action-angle variables ?his 
map approaches the one-dimmion01 form 

1p,+1=A+Ce-'~ma$o, T=rr /R 

provided e--rT @ut not necessarily Ce-'T), r and n are small. We derive asymptotic 
(for small r, 0) formulae for A and C for a special class of potentials V. We argue 
that these special cases mntain a l l  the information needed lo veal the general case 
of potentials which obey VI' 2 0 at a11 times. ?he esenliai tools of the derivation 
are the use of action-angle variables, the adiabatic appmximation and the intmduction 
of a non-oscillating reference mlution of Dufing's equation, with respect lo which the 
action-angle variables have lo be determined. These allow the explicit mnstmction of the 
Poincad map in powers of e--rT. 76 R r s t  order, we obtain the Ip-map, which survives 
asymptotically. 76 second order we oblain the Iwodimensional I+-map. In I direction 
i t  mnlrsas by a hctor e-'= upon each iteration. 

1. Introduction 

Nonlinear oscillators and their bifurcation diagrams have been widely considered 
for decades, beginning with Duffing [l]. The bifurcation diagrams have a rather 
regular structure asymptotically, that is, for driving periods T much larger than the 
oscillators own characteristic time and for friction coefficients T small enough such 
that exp( -rT)  remains distinguishable from zero. This regularity has aroused quite 
some interest (see, for instance, Parlitz and Lauterborn [2] and the Literature cited 
there), but a global understanding of its mechanism has not so far been achieved. 

We shall demonstrate here that this mechanism can be rather easily understood 
and used. It applies in principle to all equations of the type 

x + 2T5 + V ' ( Z , O t )  = 0 (1.1) 

0305.~70~2~~335+22~7.50 @ 1992 IOP Publishing U d  6335 
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where 

G Eilenberger and K Schmidt 

V ( z , r )  = V(2,T + 2n)  (1.2) 

and the following additional properties are assumed: V has only one extremum zU(7) 
at all times, which mrresponds to a stable equilibrium of the system 

V'( zu( T )  , T )  = 0 and V"( zu( T )  , T )  2 0. (1.3) 

In general, V"( zU( T )  , T )  > 0 but at discrete points in time, say T = T~ including all 
periodic repetitions, we assume V"( zu( T,), T,) = 0; i.e. the momentary harmonic 
frequency about the equilibrium vanishes at the times T,,. 

Now, for small T and 0, we can apply the adiabatic theorem. In the variable 
z = er*., the system is Hamiltonian with a slow time dependence and thus its action 
I stays constant most of the time. In the =-variable's phase space, I ( t )  decays like 
e-'", which is just the phase space contraction to be expected. Around the times 
Rt, = T", however, the adiabatic theorem fails because the momentary harmonic 
frequency becomes smaller than R. At that point, the action, which had almost 
decayed to zero, gets kicked up to a new starting value I(0) which depends on the 
angle variable 'p, = 'p(t,) via e-rT cos'p,. At the same time, 'p is set essentially 
to zero. The increment of 'p through the next adiabatic period T is obtained by 
integration of w( I ( i ) ,  T ) ,  which gives a leading term A,T and a term - ecrT cos 'p, 
from its I-dependence. Thus, an angular Poincare map 

v,+, = A , + A , T +  A ( r , R ) +  C(r,R)e-'Tcosqn (1.4) 

is obtained where the functions A and C are finite series of positive powers of 
(R ' J l r ) ,  1) < 1. Constant factors in A and C have to be determined numerically 
from the parameters of V. The map (1.4) has a non-trivial behaviour only in the 
range of parameters where Ce-rT > 1, and there it fully explains the bifurcation 
diagram of the system (1.1) in the r-R plane. There have been previous attempts 
(Sato et al [3]) to reduce Duffing type equations to circle maps. These authors, 
however, did not deduce our map (1.4). 

In section 2, we shall discuss the action-angle transformation for the system (1.1). 
Our aim is to derive the circle map and determine A and C for model systems of 
the type 

~ + 2 r k + s i g n ( z ) l z l q  = [zI 'P(Rt)  (1.5) 

with (essentially) arbitrary positive exponents q and C. In section 3, we consider the 
case C = 0 and 

P ( R t )  = 20(s inRi )  - 1 (1.6) 

i.e. a driving force which switches from +1 to -1 and back at intervals T = r S 2 - I .  
Although this case in itself does not belong to the class described above, it models 
and mrrectly explains the 'kick' mechanism. 

In section 4 we treat the cases 

P(T) = sgn(sinr) ls in~IP (1.7) 
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We introduce a slowly varying reference solution of equation (1.5), which has an 
analytically accessible long time behaviour. The general solution of equation (1.5) 
oscillates around this reference solution; the oscillations can be treated explicitly by 
use of the adiabatic approximation. 

Section 5 contains most of the technical details of the paper. Here the bincare 
map is derived to second order in e-PT, and it ir shown how the r-%dependence of 
its parameters can be determined analytically. Restriction to f is t  order in e-rT then 
yields the map (1.4). 

In section 6, we shall argue that the cases treated in sections 4 and 5 m e r  the 
general case, which can, if necessary, be put together from different succasive maps 
of the type described in section 5. 

2. Adiabatic approximation 

We derive here the application of the adiabatic theorem to systems with friction and 
discuss those aspects of it which are needed in the following sections. 

Consider the equation of motion 

2 + 2 r + + V ' ( z , t ) = O  (2.1) 

'lb apply the transformation 

means that Fe !rink at the phase space tra;ectaries J derived Frnm (2.1), which 2!Wq% 
spiral inwards, through a magnifying glass with ever increasing strength, such that we 
obselve the Hamiltonian motion 

2 + W ' ( 2 , t )  = 0 
w(z,t) = e2"V(e-"z,t) - 1 2 2  z 

(2.4) 

= al(t)e"z + i ( a 2 ( t )  - r 2 ) z 2 +  ;a3(t)e-"z3+ .... (2.5) 

We note that any linear term in V leads to an exponentially increasing term in W .  
This will invalidate the adiabatic approximation for large rt, which points to the 
(intuitively obvious) fact that one has to increase the distance from the minimum of 
V by erl to obtain a u.sqfu1 Hamiltonian description. 

We shall therefore assume al = 0 and have to take care in the following that this 
condition is met. This is at the heart of cur derivations. 

The harmonic term from (2.1) remains without an exponential factor in (2.5) but 
is supplemented by - i ~ ~ z ~ .  Fbr the intended limit r -+ 0, this addition is irrelevant, 
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but for computational applications with necessarily finite r it increases the accuracy 
if one keeps it. 

The higher 'nonlinear' terms in the equation of motion (2.4) are eliminated 
exponentially in time, which reflects the fact that the original trajectory spirals into 
the harmonic region. 

We now consider energies and actions with respect to z- and z-variables with T 

considered to be a fixed parameter 

G Eilenberger and K Schmidt 

F =  p t  W ( z , r )  (2.6) 

E = i k 2  + rzk  + V ( z ,  r )  = e-2'rF (2.7) 

I (  E ,  7 )  = - 2n / J m d t  = e-2rr J (  F, T) (2.9) 

(2 10) V ( z , r ) = v ( z , r ) - p -  1 2 2  I. 

Again the rdependent terms in E and V vanish for r -+ 0 but ought to be kept in 
numerical computations. The generating function for the canonical transformation to 
action-angle variables (AAVS) is well known 

Here F( J ,  r) is the inverse of J (  F, r )  from (2.8); it is unique by our convexity 
assumption for V. We obtain 

The adiabatic theorem guarantees that asymptotically, for r and R small, the motion 
of the system satisfies 

I ( t )  = I ( O )  e-2rt i.e. J ( 1 )  = mnstant (2.14) 

and 

(2.15) 

Ib carry out the canonical transformation induced by (2.11) it is mnvenient to 
define parameters wu and a, through the notation 

w ( ~ ,  7) = w : ( ~ ) ( + ~ 2  t fa3(r)z3 + ia4(r)z4 t . . .). (2.16) 
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We obtain the formulae 

z(v)=-RCOS(D+-R a3 2 ( W ~ 2 9 - 3 )  
6 

- i R 3 [  (2 + ?) cos39 + (9 - 2) COS,] + o( R4) (217) 

and (for the momentum i ( ' p )  = ~ ( 9 ) )  

- p ( ' p )  1 = R s i n p -  -R a3 2 ' 2  sin 'p 
WO 3 

+ i R 3  [ (2 + 2) sin39 - (9 - 9) sin.] + O( R') (218) 

Here, we have taken R = and defined 'p = 0 by using for the lower 
integration limit zU in (2.11) the left tuming p i n t  for each trajectory. In conjunction 
with these formulae for z and p we have 

F ( J , r ) = w J +  (- -+- :"2: 3i4) J 2 +.... (2.19) 

The Hamiltonian in action-angle variables-which yields the corrections to the 
adiabatic approximation-reads 

a 
f r i ( J , q , r )  = F ( J , T ) +  a , ~ i ( z , ~ , T )  

(2.20) 

Since the angular average of H - F vanishes, the true action-angle variables deviate 
from their adiabatic approximations (2.14) and (2.15) on Ihe average only to second 
order in the derivatives w,, an. Therefore, the correction to fvsf  order in w, a,, for 
all quantities z ,  p, J ,  'p can be expressed through the adiabatic variables alone. This 
well hown  fact enhances the range of validity of our asymptotic expansion in P and 
52 considerably. 

We obtain for the corrected quantities 'p, and J ,  

2 " >  'pl 

1 w, 1 2 LJu 
pc = 'p + - - cos 2'p - - R [ (- -a3 + L b 3 )  cos 3'p - (2$a3 - -a3 cos 

4 w: 2w, 9w, 18 

and 
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with relative errors in second order of time derivatives and R* times first order of 
time derivatives. Here, the quantities J ,  'p on the RHS are the adiabatic ones from 
(2.14), (2.15). The quantities z and p are then obtained by inserting J ,  and qc for 
J and 'p in (2.17) and (2.18). We shall refer to these formulae in section 5. 

The Hamiltonian (2.20) can be processed further. This h particularly useful if 
one intends to construct numerically Poincare maps in AAVS for given fixed values 
of T and R instead of using the asymptotic formulae of section 5 which contain the 
parameter dependence in explicit analytic form. 

G Eilenberger and K Schmidt 

The transformation 

where g( T )  obeys the differential equation 

1 
(2.25) 

eliminates the term linear in J from equations (2.20)-(2.22). It is generated by the 
function 

2 g + wu(T)g - - = 0 
9, 

s z ( p , J , ~ )  = Jarctan(wugztanp+ g p )  (226) 

and yields the new Hamiltonian 

(2.27) 

From this, the pdependence can be eliminated entirely through an ansatz for a 
third generating function S, in powers of J1I2. Its meficients are to be determined 
recursively from explicitly solvable linear fvst order differential equations in T. The 
total effect of SI, S, and S, could be more conveniently accomplished in one step, 
however, by starting directly with an ansatz for z and p of the lype of equations 
(2.17),(2.18), where wg is replaced by g-2 throughout. 

We shall later apply the formalism to potentials V(y,t) which are homogeneous 
functions of degree q + 1 in y and some xu(l) ;  more specifically 

x((I-o 
U - -[(Y e + i  + .")C+' - ( e  + 1)yoi - ,f+1)] 

Using this homogeneity, we obtain the scaling relation (dropping the f ?  term from 
(2.10)) 

L'" E ( l , x U )  = E ( ~ 5 ( 9 + ' ) / ~ 1 ,  Lx"). (2.29) 
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This yields expansions 
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and 

w ( l , z u )  = c l z y ) / z  + 2c2x;21 + . . . . (2.31) 

The parameters in (2.16) are then given by 

(232) 

(2.33) 

(2.34) 

generally we have a, - zi-". 
Finally 

3. Step function driving as kick mechanism 

In this section we shall demonstrate, with the technically simplest model, the 
mechanism which leads to the map. This madel Nrns out to correctly describe 
the kick mechanism encountered in section 4. We consider 

2 + 2 r i  + 1 9  = f l  = 20(sinS2t) - 1 ( 3 4  

i.e. the sign of the driving force switches at times nT. (Note that we use for 
convenience of notation the symbol T for the half period n/n.) We assume q 
to be an odd integer, to avoid the notational complication s g n ( z ) ~ z ~ 9 ,  In the final 
formulae, however, any q > 1 may be inserted. The equation of motion (3.1) is 
derived from a potential 

i.e. I = zu + y with zo = f l  in (2.28). The region in parameter space to he 
considered is given by 

r g l a T .  (3.3) 
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4 f . V  

G Eilenberger and K Schmidt 

- 1  0 .1- 

.. '1/ I 

I I  

.I - 1  0 

y,=-- raq,  

Figure 1. Step function driving as kick mechanism. 

Crucial for our derivation is the further assumption e-rT < 1 as we shall systematically 
neglect higher powers of this factor. This will be justified later. 

The mechanism which leads to the map is then easily understood with the help 
of figure 1. Suppose, we start a motion at t = 0 on the right potential curve V+(y) 
exactly at the point P,  with E,, = 2, I, = I ( E , )  and 'p(0) = 0. This defines E!,!, 
and our convention for 'p = 0. I,, and w,, are functions of q; however, for simplmty 
of notation, we shall not make this explicit in our formulae. 

The trajectoly spirals down into the harmonic region, where it reaches some point 
Q at time T with I, = I,, e-2rT, and some 'pl to which belong the quantities 

proportional to e-rT. The harmonic frequency here is w1 = q'/ ' .  At that moment, 
the potential switches to V-(y) and the energy is instantaneously raised to point 
R-this is the 'kick'. The height of R above the point 8 on the potential curve 
V-(y) is the kinetic energy (the same as the height of the point Q above the curve 
V+(y)). It is proportional to y2 - e-ZrT and is thus negligible to lowest order in 

The next cycle of length T begins with I ( 0 )  = I,, + 61, and some ~ ( 0 )  = 6qW 

we have (counting the angle clockwise from the point R)  

. Essential for the kick is the first order term 6E, = ylVL(2) - e-rT. e-rT 

For this cycle, we use the notation implied by symmetry, ie. 'p = 0 at the point 8. 

and 
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'RI lowest order in e-rT the 6(ou term can be neglected compared to the angle 
increment Alp of (3.11); i.e. the reinjection occurs with lp = 0. ( 6 ~ "  does play 
a role in the general case treated in section 5). This cycle ends at point S with 
I, + 6 I, = e-2rT (I, + 61u), where 61 ,  is smaller than Il by a factor e-rT and thus 
again negligible. 7his is he crucial sfep which eliminates one phase space dimension 
and leads to a map in 'p alone. 

It means that in the full Poincare map in I-p coordinates the contraction towards 
to line I = Il is so strong that this variable may be neglected altogether. The 'kick'- 
mechanism is thus based on a discontinuous change of the variable y which measures 
the position of the oscillator with respect to the minimum of the potential; the velocity 
y at that moment is here irrelevant, as it only leads to contributions of higher order in 
e-rT. This mechanism is our 'model A. This alternation between kicks and adiabatic 
motion (which, as we shall see in section 4, also describes the general case) seems to 
iie at the base of tbe 'iiip ana twist map' described by Brown and Chua [4]. 

A different kick mechanism, 'model B ,  will also be encountered in section 4. In 
that model, the roles of y and 0 are interchanged; e is suddenly increased to y + 2pu 
while y remains unchanged. We obtain expressions analogous to those of model A. 

Returning to model A, we shall show below that the increment in (o during one 
cycle is of the form 

1 w1 - wu 1 
A q = w , T + - A , - - -  r 21, r 6 Ill (3.7) 

to linear order in 6I,. This, together with (3.6), yields the map 

where the constants A, and B have to be determined numerically. They contain all 
the relevant information on the nonlinearity of the system. 

The map (3.8) can be written 

B 
r 

q^n+l = c + p....?p, - - -  +. R - - - - - T T ,  -- (3.3 

It obviously yields 2n periodicity of the bifurcation diagram in the a-P parameter 
plane. In the r-Q-plane, the loci of equal features (constant P = Be-K) lie on the 
curves 

1 - - ,  1 T +  - d  
1 r ' - z  

= ?rr(IC - log . ) - I .  (3.10) 

R decreases faster than r, albeit only logarithmically. Put differently, e-rT - r for 
the parameter range of interest; this justifies the neglect of higher orders of e-rT. 

We shall now complete the derivation of the relation (3.7). In 

A y =  ya(T)-y( f l !=w;T+ /T ( w ( I ) - w ; ) d t  (3 11) 
Ju 

we use from the expansion (2.31) 

Q ( O =  w ( z ) - w l  I = 2 c 2 + 3 c j I +  ... (3.12) 
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and dt = - ( l /Z r ) (d I / I )  to obtain 
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(3.13) 

For this integration, we replace the lower bound by 0 since Q behaves regularly at 0 
and I ( T )  is negligible. We expand the upper bound to first order in 61, to obtain 
(3.8) 

w1 - w, 1 
Q(I)dl--- 21, r 61,. 

4. The models P(T) = sinpi 

We consider the system 

? + 2rk + zq = z'(sin0t)P. 

(3.14) 

As we shall argue in section 6, this contains all the information required to understand 
the general case mentioned in section 1. We take q an odd, t an even, and p an 
arbitrary positive integer only to  avoid notational complications, our results being 
valid for all real values 

q > l  t = O , l o r  2 2  ( q - t ) > 2 p > 0 .  ( 4 4  

The necessity of the third inequality will become clear below (5.20). 
exponents are meant to imply for the driving force 

Arbitrary 

model A sgn(sin 0t) l  sin RtIPIzl' (4.3) 

model B Isinf2tlP1z1' (4.4) 

01 

and, as already mentioned, sgn(z)lzlq for the anharmonic force. 
For convenience, we introduce the exponent 

As mentioned in section 2, the adiabatic approximation requires the introduction of 
a new variable y( t )  via 

z1t) = z,(t)  + Y(t) (4.6) 

such that the total potential V for the y-motion has its minimum at y = 0 for all 
times. The 'naive' choice for zu(i), we call it z , ( t )  (as it is a very good approximation 
for most of the time), would be 

z , ( t )  = ( s in0 t )6 .  (4.7) 
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However, its insertion into (4.1) via (4.6) yields, of course, additional terms from the 
derivatives of za which, though of higher order in R, diverge for t -+ 0 and thus spoil 
the desired property of V. 

The equation of motion in y( t )  reads 

We require the RHS to vanish, thus z,, itself must be a solution of (4.1). the 'reference 
solution'. For the application of the adiabatic approximation to the motion described 
by the L H S  of (4.8), zU( t) must be a special solution, namely a creeping solution which 
only varies on some time scale n-n > 1, and not on time scale 1, as the general 
solution does, i.e. il must not oscillate. 

Figure Z Reference d u l i o n  wilh jumps 

Such a solution indeed exists during one half period T. It can be defined through 
an asymptotic expansion in T and R. It will be close to za except near t = 0 and 
t T .  nnalitative nhare r..-"- nnrtrait -.I.-.. (and ~ ! e  Tymmetric nne fer th.e next ha!f ~ f i &  
of model A) is shown in figure 2 These reference solutions do not join fogether at 
t = T ,  as they do in the harmonic case. Instead, for model A, it jumps from 2, to 
-zw with k e d  do, whereas for model B, zu remains unaltered and d, jumps from 
- p ,  to +p, .  Thlir provides eractiy the WO Eck mechanisms discussed in the previous 
section! 

During each half period 7': the potential V ( g :  za(t), 1) varies slowly in time and 
thus allows for the adiabatic approximation. At t = nT, the action I is always kicked 
up again. 

The determination of the kick parameters requires further investigation on zu(t ) .  
This we shall consider next. 
RI investigate z,,(t) in the vicinity of t = 0, it suffices to consider the equation 

of motion 

j: + 211 + zq = z'(0t)P. (4.9) 

We rescale the variables as 

z ( t )  = R,C(r) t = n-nr (4.10) 
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with the exponents 
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to obtain 

i + z p i + t q  =t'rP (4.12) 

p = ra-''. (4.13) 

The smooth solution tu( T )  of (4.12), which then corresponds to the desired function 
z,,(t) near 1 = 0, can be approximated by an asymptotic series, which is obtained by 
iteration of 

t n + l ( T )  = I T p -  F,'(i ' ,  + 2 P i n ) ] 1 ' ( q - ' )  

starting with an initial function f1(7) = T ' .  The series has the form 

(4.14) 

m 

tu(s) = r 6 ( 1 +  P , , ( ~ T ) T - ~ ~ )  X = 2 +  ( q -  1)6 (4.15) 
n = l  

where the Pn are certain polynomials of order n. It definitely diverges as Pn(0) 
grows roughly like (n! )2 .  Nevertheless, it is an asymptotic approximation valid for 
large r and serves several important purposes: 

(a)  it yields reliable initial conditions at large T for the determination of tu( T )  by 
numerical integration of the equation of motion (4.12). 

(b) it shows that asymptotically, for small p, the pdependence of the required solution 
is negligible. From (4.13) and (3.10), we have p EC* RI-. << 1. The reference 
solulion zo( t )  can thus be determined with r = O! This can be made intuitive in 
the following manner (figure 3). 
The minimum of the total potential in (4.1) decelerates during the first quarter 
period. In order for zu( t )  to follow this deceleration without oscillations, the 
motion must start with a very particular initial velocity towards the right and a 
very particular position on the RHS of the minimum (see figure 3). During some 
initial time interval of order a-7, the required relative deceleration x / x  is much 
larger than the friction coefficient r. On the other hand, at the time T l/r, 
when the friction effect is being felt, q , ( t )  has already approached z , ( t )  very 
closely and the velocity is small. 
The same consideration also demonstrates that the trajectories zu(l) of figure 2 
remain in their respective half planes, i.e. they do not cross the x-axis. 

(c) The solution (4.15) shows that tu(r) approaches r6 algebraically. Described in 
the original variables, this happens on a time scale a-?. Thus, we have fully 
separated time scales asymptotically for R + 0 zu( t )  approaches on the 
scale 5 2 - V  whereas the difference between R t  and sin R t  is only being felt on the 
scale a-' B a-. B 1. 
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t 

Figure 3. Motion of the potential and of the reference solution 

We arrived at the following description for zu( t )  in the upper right quarter of 
the phase plane of figure 2 (the other quarters are obtained by symmetry) 

z u ( t )  = + a z o ( t )  (4.16) 

where 

~ z , ( t )  = W ( c u ( r )  - r 6 )  r = i2.t (4.17) 

and Cu(r) is the unique slowly varying solution of 

+ = Fir''. (4.18) 

This reference solution is similar to and is related to asymptotic solutions of Duffing's 
equations considered by watt-Smith [l]. 

In particular, we define 

F1 = €,(O) F* = i u ( 0 ) .  (4.19) 

c1 and FZ, like I,, and wu from section 3, belong to a set of about a dozen 'universal' 
numbers, that have to be determined numerically to obtain all the prefactors of the 
map. By 'universal' we mean independent of r and R. They do depend on the 
exponents e ,  p and q and on whether one considers model A or B. 

To numerically calculate creeping solutions for finite values of R and r one 
generates initial conditions for the differential equation at t = T / 2  by substituting 
the series 

m 

z u ( t )  = sin6 Rt (  1 + R, Cl-'" sin-"' R t )  (4.20) 
% = I  

into the equation (4.1). The coefficients R, depend on cosat, sin R t  and r /R.  The 
series is asymptotic for R - 0 and yields useful initial conditions at 1 = T/2  for 
creeping solutions if R2 5 lo-'. 
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5. Determination of the map parameters 

In this section we shall derive the angular Poincare map 

G Eilenberger and K Schmidt 

'pn+1- - a + pms'p,, (54 

for systems of type (4.1) and give expressions for its parameters a and p in terms of 
r and R, valid asymptotically for small r and R. We shall obtain representations 

N 
= A, + A,T + A ,  FJT-, n) 

"=Z 

(5.3) 

Here, the constants A,, B, and C will be expressed in terms of the basic set of 
numbers mentioned earlier. The functions F, are proportional to positive powers of 
R"/T- when R << T-, hut we need not make this additional assumption. The formulae 

e-rT or ( W / T - ) - ~ ,  compared to those kept, are systematically neglected. In the 
following we shall derive our results by first crudely tracing the generation of the map 
and then filling in details later. 

Suppose, for the moment, that the adiabatic approximation for the motion with 
respect to the reference solutions were rigorously valid at all times. At the end of 
the ( n  - 1)th cycle the system coordinates are close to the endpoint of the reference 
solution, denoted by 2T on the LHS of figure 2 

The nth cycle from t = 0 to 1 = T then starts with initial AAVS, which are 
conveniently written as 

(5.2), (5.3) ai2 ZsjKiptatk hi the sers2 mat a:: tiiiiis whkh ai2 snia::ei 3j facto3 

I,(O) = R*-r+.r(I, + 61,) = R27t.rI,(1+e-PTin) 

~ ~ ( 0 )  = 'P. + 6vn. 
(5.4) 

(5.5) 

Here, we have denoted by I ,  and 'pa those values which are obtained if we start 
eracl& at the endpoint 2T of the LHS reference solution in figure 2 The scaling factor 
R27.+.I transforms I into the E,r scale of (4.10) such that I, becomes asymptotically 
independent of R. Continuing to t = T,  I, and 'p, evolve into 

I ,  = I ,  ( T )  = e-2rT I,(o) 'p,, = 'p, ( T )  (5.6) 

where the 'pn are derived below. Near T the motion is close to harmonic as in the 
model of section 3; its coordinates and velocities are then given by linear combinations 
of the quantities 

and uz = U; (5.7) I - - e-rT ( 1  + e-rTin)l/zeivm 

with factors ( 1 , / 2 ~ ~ ) ~ / ~  and scaling powers of R,  the latter depending on whether 
one uses the r, t or the E ,  r scaling. Performing a specular reflection in the 2, x 
plane (considering model A), the system is again near the point 2T of figure 2 More 
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specifically, it is apparent from the analogous discussion in section 3 that its deviation 
from the endpoint of the reference solution is of order e-rT. The initial conditions 
for the (n + 1)th cycle can now be expanded in powers of the small quantities uy 
and we can write to second order (using the usual summation convention) 

nt,  = K,u, + fI<”CUYUI1 (5.8) 

(5.Y) 

e - v T i  

6Vp,+, = P“U“ + fP”ru.UP. 

Since I and ‘p are real, these coefficients are more conveniently expressed by 
amplitudes and phases as 

I<, = K; = +B,e‘X‘ p - - p - ’  ,- - -C 2 1  e’*! (5.10) 

IC,, = lip& = lB2eiXz p ,, - p * - l  - 22 - T~2ei+z  (5.11) 

Ii. 12- - Ii.. z1=  4 4  p12 = P;, = +c, real. (5.12) 

Also, the transformation from uy to I, ’p is canonical; this requires 

~ i m ( ; { , p ~ - ! ~  2 1 - 1  I c s j n ( x l - $ l j = i  I (1i3j 

and 

IC,, P2 + li-, P12 = Pll K2 + PI I<,, . (5.14) 

?bgether with I, and ‘pa we have thus twelve numerical constants which determine 
the map to second order in e-rT. We shall show below that these COnStants are 
asymptotically independent of R and r and thus ‘universal’; they do depend on p, q 
and e,  of course. 

The map is thus a systematic expansion in powers of ecrT and to second order 
in e-rT we obtain for the action 

in+, = (1 + ie-rTi,,)B1cos(’pn + xl)  + e - ‘ T [ B 2 ~ ~ ( 2 v n  + x 2 )  + E31 (5.15) 

and for the angle 

P,+,(o) = ‘p, + e-rT(l  + +-‘T;n)C, a ( v n  + 
+ e-ZrT (C*co@rP, + tLz) + C,). (5.16) 

?b complete the map, we need the evolution of pntI(O) to v,+,(T) .  We have 

T 

P”t,(T) = ‘p”tl(0) + 1 % ( L + d t ) ? i ) d t .  (5.t7) 

io 0 sfid T, ;\e fiinc;ioii z”(q & .*e;: appiGimated “.j; 

U 

scepi for va;ues 
r , ( t )=(s inn1)6 .  Consequently, the expansion (2.31) is valid with I” = z,(t). We 
write 

m 

Ma(1(t),t) = C uc,IY-1(t)(sinRl)-26” (5.18) 
“ = I  
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where we introduce 

G Eilenberger and K Schmidt 

+ 3) - ( q  + 1) 1 n, = 1-26 , .  (5.19) 

We rewrite this using y = 6 ( l -  1)) 

wa = c l s i n - 2 6 1 ( R t ) + ~ u c , ( I , + 6 1 ) Y - ’ R ~ R ~  ( y )  -26” e-2(”-l)P‘ . (5.20) 
U 3 2  

Consider this expression in the extreme asymptotic limit 1 > T > R where we may 
linearize sin R t  in the region where e-2r1 is non-negligible. The uth term in the sum 
(5.20) contributes a term to the angle increment J w ,  d t  proportional to 

(5.21) 

We are interested only in terms with positive nv; any term with negative nu yielded an 
asymptotically vanishing contribution from the upper integration limit and diverged 
at r = 0. Consequently, we sum the terms in (5.18) only up to nm,, = N, such that 
K~ > 0, nN+, < 0. (We do not consider the rather special case that some nN = 0). 

The condition 6 < 4 of (4.4) guarantees N 2 2, othenvise no Idependence 
would survive in (5.20) and thus p-values of interest could not be realized with 
T << 1, R g 1 and e-rT *: 1 simultaneously. 

For finite T and Q we obtain from the adiabatic approximation 

with 

(5.23) 

and 

F,(r ,R)  = R(q-’)x”F 6,,(u- 1)- (5.24) ( 
where F is given by 

F ( 6 , p )  = lz e-2”‘(sint)-26 dt 

2?rT(n) 
r(i - 6 +  i p ) r ( l -  6 - ip) 

= 2-ne-*p (5.25) 

We could not find this integral in tables and arrived at equation (5.25) through 
analytical continuation to p = e-i*/2 of [SI 

(5.26) 
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Collecting the terms from equations ( 5 . 9 ,  (5.9), (5.15), (5.16) and (5.20) we obtain 
for the pmap-to second order in e-rT 

(5.30) 

(5.31) 

N 
o,=C(~-l)A,F,(r,n)[Bzcos(2(o, +xz)+ B3 

"=Z 

+ i ( u  - 2)B: COS2(p, + X I )  + 4 Bii, Wpp, + X I ) ]  

+ &in cos(p,, + + cz m s ( 2 ~ ,  + &) + c,. (5.32) 

These formulae contain all terms to second order in ecrT and to all non-negative 
(fractional) powers of (Rq/ r ) .  

In the derivation of the map, equations (5.15) and (5.29)-(5.32), we used two 
unrealistic simplifications: 
(a) The equation of motion of the y variable from equation (4.8) 

ji+ 2 q j +  (y + zu)q - zi - [(y+ zJ - z:]sinPnt = o (5.33) 

cannot be handled by the adiabatic approximation near t = 0 and t = T because 
there zU/zu ki noi small (see figure 2). 

does not yield a reasonable approximation to zu( t ) ,  
therefore (5.23) is not correct in this region. 

(b) In the same regions, (sin 
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Nevertheless, the correction for both effects is completely absorbed into a proper 
choice of the ConstantS I,, va, IC7 and P,  the map equations remain unchanged. 

We shall describe here the principal idea only; technical details will be given in a 
later paper. 

In the vicinity of T = 0, we use the scaling of section 4 and solve 

G Eilenberger and K Schmidt 

( + € 9  - € +  = 0 (5.34) 

as a good approximation for the motion within the asymptotically interesting range of 
parameters T,  R. Actually, this 'vicinity' becomes arbitrarily large in the asymptotic 
limit and we may consider initial and final times -T- B 1 and I+ B 1 large enough 
that at these times the motion of E (  T )  - tu( T )  has become harmonic and adiabatic. 

For initial conditions at a latge negative time r- (observe the specular reflection- 
we consider model A), we use 

(5.35) 

(5.36) 

Here 

= ( q - e ) l r p - 1 ) 6  (5.37) 
and AV-( T-) will be defined below. At large positive times T+ the solution has the 
form 

iCr+) = iuCT+) + (2wu(T+)I.+) 112 S1n(qr . + Aip+(T+)). (5.39) 

For u1 = uz = 0, we put 

I, = I, and AV+ = l'+ w,(I.,r)dr (5.40) 

thus defining I, and 'p,. We may now insert I, into the initial conditions (5.35) and 
(5.36) and put 

I- = Ia lq  and Ap- = -  w,(I- , r )dT.  (5.41) l'-' 
For sufficiently small u1 = U ;  we obtain then at T+ 

T+ 

I t = 1 , + 6 1  and A ~ p + = 6 p + l  w , ( I t , s ) d s  (5.42) 

with quantities 6 1  and 6ip which are (asymptotically in T+) independent of r+ and 
which have the expansion (5.8) and (5.9) in powers of u1 and U * .  

This construction ensures that all effects of the transition through the non- 
adiabatic and non-harmonic region near T = 0 as well as the effect of w - wa # 0 
in this region are fully absorbed in the well defined limiting quantities I,, va, 61,  
6p and the expansion coefficients of the latter in powers of U". These quantities are 
accessible only numerically. 

This completes the derivation of the map. 
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6. Summary and conclusions 

We have shown, that the bifurcation behaviour of the generalized Duffing equation 

z + Z r i  + 1‘1 = 1‘ sinP ilt (6.1) 

can be understood asymptotically from a me dimensional (angle-) PoincarB map 

‘pn+,- - a + Pcosv,,. (6.2) 

n o  aspects of the ‘asymptotic’ limit are essential assumptions with physical contents; 
a third one is more technical. 

Firstly, we assumed the validity of the adiabatic approximation which is sufficiently 
well fulfilled if P and R are of order lo-’ or less. Secondly, we argued that the 
PoincarB map for one half cycle is essentially one dimensional and only depends on 
the angle ’p if ecrT is small enough; PT 2 2 suffices. The obvious reason for the 
latter being, that the action contracts by e-2rT during each half cycle. Both conditions 
are indispensible in obtaining the map (6.2), although we believe that qualitatively 
the structures of the ‘tongues’ in the Duffing’s equations’ bifurcation diagram remain 
the same even outside this asymptotic region. 

Thirdly, we have derived analytic expressions for the constants a and pin terms of 
7’, Q and numerical constants, which are summarized below. For these expressions to 
be nearly correct, one needs to go further into asymptopia. The factor e-rT roughly 
estimates the relarive error in the pms ‘p, term of (6.2); including a deviation from 
the pure cosine behaviour as one sees in (5.31). In addition, the quantity R’/r must 
be rather small to justify the neglect of higher terms in the U sums. 

Thus there exists a wide region in r-il parameter space, where a onedimensional 
?map with first and second Fourier components is a very good approximation to 
the Poincare map for (6.1), but where analytic expressions for the coefficients are 
not easily available. Actually, for applications, this is the more interesting region. 
Although following section 5 one may derive corrections to the formulae given below, 
it may be more practical to simply determine a one dimensional map hy numerical 
integration of (6.1) for one half period T.  This will be described in the forthcoming 
paper. The asymptotic AAVS are best initialized and compared with map values at the 
point t = T/2 .  

Collecting all the bits and pieces from the previous sections, we have obtained 
the following asymptotic expressions for the parameters of the map (6.2) 

N 

a = A U t  A , T + C A , F v ( ~ , Q )  (6.3) 
v = Z  

N 
p = e-rT [C + B, c( v - 1)A,F,(r ,R)]  

“=2 

where A, = ‘pa + x,, E ,  and C = C, cos( @, - x,) are related to the numerical 
constants defined in section 5. We have shifted all angles by x, to obtain the pure 
cosine behaviour in (6.2). The omitted term C, sin(@, - xl)sin’pp, contributes a 
change in amplitude and a phase shift which are of order (il’/r)-‘z, but neglecting 
this term is valid only in the extreme asymptotic limit. 
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The factors are 

which contain the fourth numerical constant 1. and the lhylor coefficients nen  from 
(2.34). -- .̂  ... ̂_^ 

111c cxpullenlr WCIC 

1 = 1 - 26, - ( q  + 1) 

and N is to be determined by nN > 0, K,+,, < 0. 
The foregoing considerations are in principle easily extended to the general case 

of a potential V (  I, R t )  as described in section 1. In the asymptotic region of small R 
and r,  most of the time the system oscillates harmonically around the slowly moving 
minimum of V ,  given by Equation (1.3). This motion determines the leading term of 
the angle increment as A , T  with 

where s, = Rt,  and s,+~ = Rt,,, are two subsequent time instants at which 
V"(I,,(S), s) = 0. They span a smooth 'period' between two kicks. Everything eise 
happens in a narrow region around the t,, where V may be approximated by its 
lowest order terms in I and t. For simplicity of notation, let us take 1, = 0 and 
z,,(t,) = 0. Then, V'(0,O) = 0, V"(0,O) = 0, and we may write, to lowest order in 
z and 1,  with proper scaling of time and length 

(6.10) 

ie. 

v f ( I , n t )  - sgn(t)it19 - U,J~J'JTJ~. (6.11) 

One has to assume q > 1 and q > e lest the assumptions on V" and on 
xu, respectively, are violated. (The mndition 2 p  < ( q  - e )  is not necessarily 
fulf~lled. In that case, our theory is not applicable!) The sign function 
ur = ( T / I T I ) " ,  v = 1 or 0, allows for the ONO models A or B respectively for 
which E,,( L) crosses or touches the t-axis. Except for additional numerical factors 



Poincart! maps of Dufing oscilfators 6355 

which enter through the foregoing scaling, we obtain the map (6.2) from +(in) to 
co(t,+,), where the factors now have to be determined by considering the motion 
through WO previous 'periods'. Thus, if several zeros at different time instances 
occur in V" during one period 27rlC2, one had to introduce. one map with possibly 
different parameters for each 1,. The bifurcation diagram is then determined by the 
finite sequence of maps which describes the alternation between adiabatic motion and 
kicks which the system experiences during one full cycle. In the models of section 4, 
we exploited the symmetry between both half periods to reduce all effects to one 
single map (6.2). 

The original Duffing equation 

8 + ZRX + X 3  + X = A s i n u r  (6.12) 

does iioi obioviousiy beiong io the ciass of noniinear systems we have considered since 
V" > 0 throughout in (6.12). Its bifurcation diagram is often considered [2] in the 
A w  plane for fixed R and large A and has features very similar to the one without 
the linear restoring force. This is explained as follows. 

Let a = A'/' > 0 and rescale 

(6. i3) 

to obtain 

j: + 27-i: + 1 3  + ( T / R ) * ~  = sin W. (6.14) 

The asymptotic behaviour in the r-n parameter plane with R held fixed is now 
described by our theory with q = 3, e = 0, p = 1. The term ( T / R ) %  is negligible if 
(75-7) < R; we had neglected a similar term in section 2. 

An interesting question arises how to understand bifurcation diagrams for systems, 
the potentials of which do not obey all assumptions made in section 1. 

One could consider systems where V" > 0 remains finite asymptotically in T and 
R fc: a!! times t. 
as it yields I ( i )  - e-2'fI(0) forever. It is conceivable that such systems have no 
bifurcations at all in the asymptotic limit. Otherwise, one expects that rlC2 5 1 is 
the parameter regime of interest. One could imagine, then, that some correction to 
the adiabatic approximation leads to an equation for slow motion of I, which might 
yield a map upon completion of a cycle. 

Another ps&i!i ly  for V b that V" = 0 does occur, hn! that V has a mn!tinle r- 
well structure, at least during some time intelvals (for instance, the periodically 
driven Josephson junction, a system of great interest). In that case, the adiabatic 
approximation applies during most of the time, but switching between different wells 
will yield a wealth of new phenomena, which are not likely to be amenable to the 
simple type of analysis we have used here. 

0.;; abia9a:ic a p p i o x h x "  scheme b;eab be*n in this a s e  

- - ._ ..._. 
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